If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10y^2-30y=6
We move all terms to the left:
10y^2-30y-(6)=0
a = 10; b = -30; c = -6;
Δ = b2-4ac
Δ = -302-4·10·(-6)
Δ = 1140
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1140}=\sqrt{4*285}=\sqrt{4}*\sqrt{285}=2\sqrt{285}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-30)-2\sqrt{285}}{2*10}=\frac{30-2\sqrt{285}}{20} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-30)+2\sqrt{285}}{2*10}=\frac{30+2\sqrt{285}}{20} $
| 10y^2-30y+225=0 | | 20(x-9)=12 | | 3x=15-x+26 | | 14x/16+18=29 | | -4x-5(3-4x)=-6+20x | | 4x-12=2(11–3x) | | 20-(x+9)=11 | | 2(x+4)=3(5+x) | | 20-x-9=11 | | 14x÷16+18=29 | | 1,5x+15=2x+10 | | 6x=9x+27 | | -42+x^2=0 | | 96x+11=-(6x+5) | | 4(2x-3)+4=8x | | (x-3)/5-2=1 | | X²+2x+121=0 | | (x+4)=3(x+5) | | -82(x+7)=6x+9 | | 2x-4(x+3)=6+4x | | (2x-25)=50 | | (3x+25)=(75-2x) | | 15y2=5y | | 3x+11=25-4x | | x-0.16x=4200 | | 8+3(r+5)=51 | | 15-4(6n+3)=39 | | 2x=3x=12 | | (3x-2)-(4-5x)=0 | | 5-2(7-x)=7 | | 9y-100=0 | | 12x-5-7x-2=1 |